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I. INTRODUCTION

This paper examines a farm’s decision to adopt modem irrigation technology with

and without the availability of a water market. When there is no market, production is

determined by the farm’s stochastic water allocation x0. The farm initially produces with

traditional irrigation technology, but if its allocation drops to a threshold level ~0, it may

pay a sunk cost I and invest in the modem technology. It is also possible, if the cost of

investment is prohibitively high and/or if the gains from the modem technology are not

great, that the farm will never invest. In these cases, the farm will continue to produce with

the traditional technology until x0 drops so low that it stops producing all together.

When there is a market, the farm can adjust its water supply in response to changes

in the market price p. The farm initially produces with traditional technology, but if the

market price rises to a threshold level if, it may pay the investment cost I and switch to

the modem technology. Although the farm’s profit with either the traditional or the modem

technology depends on its allocation level x0, the farm’s technology adoption decision is

independent of x0, because the difference in profit between the two technologies is not a

function of x0. As in the no-market case, the farm may never invest in the modem

technology if the net gains of adoption are too low. Eventually, the price may increase to a

cutoff level at which the farm sells all of its water rather than producing with either

technology.

Suppose threshold levels, x_0 and p’, do exist at which it is profitable to invest in

the modem technology. Whether the farm invests earlier with or without access to a water

market depends on the time paths ofx0 andp. Ifp rises to ~ before (after) x0 falls to ~,

the farm would adopt earlier (later) with market access than without market access. The

correlation between x0 and p may depend on the relative seniority of the farm’s water

rights. If for example, the farm has very senior rights, x0 may remain relatively constant

while the market price increases over time. In this case, the farm might never adopt

without market access; however, it might adopt if it has market access. If instead the farm

has junior rights, and faces large cutbacks in its allocation relative to other water users, it

might adopt earlier without market access.

The paper is organized as follows. Section II provides a brief review of related

papers in the technology adoption literature. Section II-I develops the model of technology

adoption in the non-market and section IV develops the model of adoption in thecase,

market case. Section V compares the technology adoption decision under the two systems,

and section VI discusses the impact of including transaction costs in the analysis.
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II. LITERATURE REVIEW

While there is an extensive literature on irrigation technology adoption, surprisingly
few studies have analyzed the effect of water markets on technology adoption. The work
which has examined the effect of water markets on technology adoption does not consider
the impact of dynamics or uncertainty. The analysis of non-market versus market water
allocation is similar to the of fixed environmental standardssystems very analysis versus
tradable emissions permit systems. A few studies exist which examine the effect of
tradable permit systems on pollution abatement technology adoption; however, here again,
the models do not address issues of dynamics and uncertainty. As argued in the
introduction, the greatest value of switching to market-based systems may not be the value
of the increase in allocative efficiency at any given time, but the value of the increase in
dynamic efficiency associated with technology adoption and other long-term investments.
To test this argument, we need a dynamic model of technology adoption which takes into
account the effect water supply uncertainty and water price uncertainty on investment
decisions.

Two seminal articles on irrigation technology adoption by Caswell et al. [ 1, 2]

examine the effect of well depth and land quality on the choice of irrigation technology and
the effect of a drainage effluent charge on the choice of technology. In both papers, a
farmer chooses between two irrigation technologies, a traditional technology and a modem
water-saving technology, by solving a two-part optimization problem. First, the farmer
chooses the optimal input quantities with each technology and second, the farmer chooses
the technology which generates the greatest profit, with the constraint that the profit is
positive. Given that the models in Caswell are static, the two-part optimization takes place
instantaneously. In contrast, the dynamic model in this paper assumes that the farm is
currently producing with the traditional technology and it must decide when, if ever, to
switch to the modem technology. While significantly different from the Caswell models,
the model in this paper has adopted the same quadratic production function technology used
in the Caswell papers. Using Califomia cotton production data, Caswell (1986) finds that
the quadratic production function provides more reasonable simulation results than a Cobb-
Douglas production function [1 ]. Future versions of this paper may employ a more general
production function.

Shah and Zilberman [3] analyze the effect on technology adoption of switching
water to water markets, using a multiplefrom non-market allocation staticmodelwith

technology choices. The non-market system they employ is a "queuing" system based on
prior appropriation doctrine. Under their queuing system, senior rights holders have
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I access to as much water as they want and junior fights holders have access to whatever

i water is left over. Transfers between senior- and junior-rights holders are prohibited.

Since their model is static, there is no ,sense of how supplies to senior- and junior-fights
holders change over time as supplies fluctuate. Shah and Zilberman contrast adoption

I behavior under a queuing system with a behavior under a water market, but rather than
solving the decentralized market equilibrium directly, they assume that the necessary

I conditions for the First Fundamental Theorem hold, and solve it via the socialindirectly
planner’s optimization problem. Shah and Zilberman conclude that a switch from queuing

I to a market system will increase the adoption of modem irrigation technology. However,
their conclusion seems to rest on an analysis of the behavior of senior-rights holders. It
does not address the possibility that junior-rights holders may have less incentive to adopt

I modem technology under a market system.
In this paper, the non-market allocation system is general enough to describe either

I a queuing system like Shah and Zilberman’s or a system in which supplies are rationed
proportionally among users. An individual farm’s allocation fluctuates over time in

I to shifts in supply and demand. A farm receives the same initialresponse aggregate
allocation regardless of whether there is a non-market or a market system, but with a

I market the farm has the ability to reduce or increase its supply by trading in the market.
The comparison between the non-market and market systems is closely related to the

I comparison between a fixed pollution standard and a tradable emission permit system.
Using a static graphical analysis, Malueg [4] demonstrates that a shift from a fixed standard
to a tradable permit system may increase or decrease the incentive for f’n-ms to switch from

I a high-cost to a low-cost pollution abaterflent technology. In his model, if a firm is a seller
(buyer) of permits with both the high-cost and the low-cost technology, the gains from

I            adopting technology are greater (less) tradable permit system. If athelow-cost underthe
firm buys permits using the high-cost technology and sells permits using the low-cost

I technology, then the gains from adopting the low-cost technology may increase or decrease
under the tradable permit system. The gains will increase (decrease) if the firm buys

I relatively fewer (more) permits with the high-cost technology than it sells with the low-cost
technology. This paper uses Malueg’s framework to compare the irrigation technology
adoption decision under a non-market and a market system. The static graphical example

I of the adoption decision is used to motivate the intuition for the stochastic dynamic
analysis.

I The stochastic dynamic investment model developed in this uses option valuepaper
techniques common in the finance literature and popularized in a recent book by Dixit and

I Pindyck [5]. Farms face significant uncertainty, regarding future water supplies and
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I prices, which affects the value of investments in modem irrigation technology. The static

i models described above do not capture the effect of this dynamic uncertainty on a farm’s

investment strategy. Dynamic models which employ traditional cost-benefit analysis also

do not adequately account for the effect of uncertainty. Traditional cost-benefit models of
I investment predict that a firm will invest when the expected present value of investment

equals the cost of investment. However, Dixit and Pindyck show that when investment is

I by uncertainty, irreversibility ability more information,characterized andthe towait for

firms should not invest until the expected present value of investment exceeds the cost of

I investment. This role is more consistent with observed investment behavior. Firms

require an expected return greater than the investment cost because when they invest, they

I give up the option to invest. The option to invest has a positive value because, by waiting,

firms can obtain more information before committing to a sunk investment cost. Firms

i should wait to invest until the expected present value of investment equals the cost of

investment plus the value of the option to invest.

In a basic option value model of investment, McDonald and Siegel [6] consider a
I firm’s decision pay a sunk cost I in return for a project whose value, V, is stochastic. In

other models, the value of the project is an explicit function of an output price P, which is
I stochastic. The McDonald and Siegel model analyzes the decision to invest in a project

which generates no returns until after the investment is made. Once the investment is

I made, project according to a exogenous process.thevalueof the evolves stochastic The

model does not specify a production process which would allow the ftrm to vary its inputs

I in response to realized values. Other models, known as optimal stopping problems,

examine the decision to disinvest. Before the disinvestment is made, the project produces a

I stochastic benefit (or cost) flow, and after the disinvestment, the flow is zero. This paper

differs from these models in three respects. First, instead of the usual output uncertainty,

this paper focuses on input uncertainty: the farm’s initial water allocation x0 and the price
I of water p are stochastic. Second, this paper analyzes the decision of a farm to switch

production technologies. Because the farm is already producing before the investment in
I new technology is made, the farm generates a positive income flow both before and after

the investment. Hassett and Metcalf [7] and Herbelot [8] also employ the option value

I approach in technology switching models.

Hassett and Metcalf studied residential energy conservation investments and found

i that consumers’ responses to investment tax credits were very low. If consumers were

making their decisions based on net present value theory, they had to have been using

I extremely high discount rates. Hasset and Metcalf develop a model in which investments

I -5-
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are irreversible and the price of heating fuels fluctuates randomly over time. Given the
irreversibility and uncertainty of investments, the model predicts that individuals will wait
until the investment return is significantly above the investment cost. The household
investment data support their model. They simulate the effect of an investment tax credit
and find that, if uncertainty is ignored, the effect of the tax credit is significant. However,
when uncertainty is taken into account, the tax credit has very little impact.

Herbelot employs the option value approach in an analysis of electric utilities’
efforts to comply with S02 emissions regulations. An electric utility can comply with the

regulations by purchasing permits from other utilities, or by switching to a low-sulfur fuel
or installing scrubbers. If the utility switches fuels it must pay a sunk cost to retrofit the
plant, and if it installs scrubbers it must also pay a sunk capital cost. In addition, the price
of emission allowances and the price premium on low-sulfur fuel fluctuate stochastically.
Herbelot shows that the utility may choose to purchase emission allowances, even if the
expected present value of compliance is higher with the allowances, because of the
flexibility they provide. Even if the utility does not decide to switch fuels or install
scrubbers, Herbelot argues that the utility’s true compliance cost is lower because it has the
option to switch fuels or install scrubbers.

Herbelot’s most closely resembles the in thisapproach oneemployed paper.
Herbelot does not, however, compare the utility’s investment strategy under a permit
system with its investment strategy under a fixed emissions standard. This paper examines
the farm’s technology investment decision both when it cannot adjust its input levels (under
the non-market system) and when it can adjust its input levels (under the market system).
In addition, this paper considers the effect of input supply uncertaintyI in addition to input
price uncertainty.

Ill. TECHNOLOGY ADOPTION WITH A NON-MARKET ALLOCATION SYSTEM

Stochastic Water Supply

The aggregate supply of water to the agricultural sector fluctuates stochastically due
to changes in weather and water policy. Over time, average supplies to agriculture are
assumed to be falling as the growth in urban and environmental water demand exceeds the

growth in agricultural demand. The aggregate supply (in units of acre-feet) is represented

by the variable W(t), which follows a geometric Brownian motion with negative drift

I t Analytically, permit supply uncertainty would be analogous to water supply uncertainty.
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dW = l.t~Wdt + tywWdzw. 2

An individual farm receives an allocation of X0 acre-feet at time t, which is a

function of the aggregate supply, W. Suppose water is allocated according to a

proportional rationing system. For J water users,

X o=r w, and  rJ=l.

If the aggregate supply is divided into equal shares of ~W acre-feet, and farmj owns Kj

shares, then

r’ =

2 W = W(t). z = z(t), etc. For notational simplicity, t is not explicitly written here nor elsewhere in the

paper. W is known as an Ito variable. It is a function of the Wiener variable, z. A Wiener process can be
thought of as a continuous time version of a random walk. The process has three key properties: First, it
is a Markov process. This means that the probability distribution of future values of the process depends
only on the current value, and therefore the current value is sufficient to make efficient forecasts of future
values. Second, the probability distribution of the change in the process over any time interval is
independent of any other non-intersecting time interval. In other words, the Wiener process has independent
increments. Third, changes in the process over any finite interval are normally distributed with a mean of
zero and a variance which grows linearly over the time interval. Since the variance goes to infinity over the

dz/long run, the process is nonstationary. The derivative /dt = ~’ therefore does not exist in the

conventional sense. Sample paths of a Wiener process have many jagged ups and downs and are not
differentiable. For more information please refer to Dixit and Pindyck, Chapter 3.

Since it does not make sense to have negative supply, the logarithm of W is modeled as a Wiener
process, rather than W itself. Over any time interval, the change in W, dW, is lognormally distributed and
the percentage change in W, dW/W, is normally distributed. /.tw W is the expected instantaneous drift rate

of the Ito process, ando’w2W2 is the instantaneous variance rate. Thus,

V(dW)= a2W’-dt.

Since the variance depends on dt, the standard deviation depends on ,~. In the short run the volatility of

the process dominates, because in the short run ,~" >>t, but in the long run the trend of the process

dominates, because in the long run ,~’< <t,
3 A proportional rationing system is used to allocate water in the Colorado-Big Thompson project. In other

projects, for example the Central Valley Project in California, a priority rationing system (also known as a
queuing system) is used. The function describing the relationship between Xo and W will be more complex
with a priority rationing system, but the same principles apply.

C--097557
C-097557



I
I            A farm’s production depends on the number of acre-feet applied per acre. Given that farm

I j is Ai acres,

is the number of acre-feet per acre allocated to farmj at time t. The stochastic process of

xd can be found using Ito’s Lemma.4 For notational simplicity, the superscriptj is

i ignored. By Ito’s Lemma:

1

|
duo =7 w

|
=22r(mWdt+ rwWdz)

= pw(--~4V)dt+~rw(~TW)dz

I = Pwxodt + y~rwxodzw

=.l.txxodt+ Yqxodzx,    where Px =/-tw, °’x = O’w and dzx = dz~,.

I Therefore, x0 also follows a geometric Brownian motion when water is allocated according

i
to a proportional rationing system.

i Production

Production depends on effective water, ei = o:ix0, where tx~ indicates irrigation

i efficiency and 0 < o~i < 1. The farm currently uses traditional irrigation technology;

I
however, it has the option to invest in modem irrigation technology which is more efficient

4 It is necessary to use Ito’s Lemma because, while W is continuous in time, d~dt does not exist. Given

I

an Ito variable x, which follows a generalized Brownian motion with drift,

dx = a(x,t)dt + b(x,t)dz,

I               and a function F(x,t) that is at least twice differentiable in x and once in t, by Ito’s Lemma

OF aF ~ O~(dx)2

!
dF = ~tdt + "~xdX +Ox

"

N
!          (See Dixit and Pindyck, p. 79.) In this case, since ~-t= 0 and 0--~-= 0, dx0J =-~-dW.

I -8-
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(it produces more output with a given amount of water). Adoption of the modem

technology requires payment of an irreversible cost 1. The traditional irrigation technology

is represented by i = 1 and the modem technology is represented by i = 2. Thus, oq < o~2.

The farm’s instantaneous production function is quadratic, and water is the only input:

Yi = a q-b(o(iXo)-C(6giXo~ i= 1,2,

where a,b and c are constants. Letting bi =boti and ci = co~2, the production function

can be written as

Yi = a -t-bixo --CiXo2 i = 1~..5

Figure 1 illustrates two quadratic production functions, one using traditional and other
using modem technology. With the quadratic production function, the marginal product of
water eventually becomes negative. I assume that there is free disposal and that the farm

stops applying water once the marginal product reaches zero. When x0~axis applied, the

marginal product is zero for technology i. If x0 > xgax, the farm throws away its excess

water. One can solve for x0"~Xby differentiating the production function with respect to

x o and setting the first order condition equal to zero.

°’YZ~: = bi - 2C iXo"~~x = 0o
Output is maximized when the farm applies

bi      bXoi -- 2Ci 2C0(i i = 1,2.

Since o~ < ~2, it follows thatx~~x < x0"]ax, and thus production is maximized using less

water with the modem technology than the traditional technology. However, the maximum
output achievable is independent of the technology used; therefore, the areas under the two

s The concept of effective water is taken from Caswell et al. (1986, 1990). While a more general

production function may be used in future versions of this paper, Caswell et al find that yield can be
approximated reasonably as a quadratic function of effective water. They conduct a numerical simulation of
cotton production in the San Joaquin Valley using a quadratic production function with the following
parameter values

Yi =-1,589+ 2,311(otixi )-462(o~ixi ~ .
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production functions in Figure 1 are equal. Plugging in Xo~’Xand simplifying, maximum

output with either technology is

ymaX = a + b 2/4c i=1’2"

If a < 0, Yi will not become positive until a minimum amount of water is applied. Using

the quadratic formula, one can solve for the values of x0 for which Yi is zero. Let x0~ and

x~ be the low and high values ofxo that solve the equation a +bixo - CiXo2 ~-. O. Then

L b - 4b2 + 4ac
Xoi = 2c0~i

n b + .~b2 + 4acx°i -     2 co~i

The high values can be ignored since x~ > x~.aXand the farm never uses more than x0~."x.

The low values are relevant. Assuming a < 0, and given cq < o~2, then XoZ2 < x0~ as

illustrated. In other words, less water is required for the first unit of production with

modem technology than with traditional technology.

The Profit Functions

Since xo is exogenously determined, the farm does not have to solve a maximization
t. the farm’s only decisions are which technology to use andproblem. Assuming x0 > x0~

whether or not to use its entire supply of water. The profit function for each technology is

defined for three regions of x0:

(1) ~:~ (xo)= 0 ifO< xo <x~    i=1,2

(2)   (xo)=P[a+bixo-c xo2] if4<xo<  i=1,2
2c~

b 74c](3) zci(x0)=P +          ifx0>         i=1,2.
2co~i

Cotton yield is measured in pounds per acre.
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i
In region (1) production is zero, in region (2) production is positive but less than ym~, and

in region (3) production equals y~X. The farm is assumed to be a price taker in the output

market. In order to concentrate on the effect of input supply uncertainty, the output price P

is assumed to be fixed.

The Investment Decision

Suppose at first that the farm does not have the option to switch to the modem
technology. Then the expected present value of the farm at t = 0, given an initial value of

xo is

ri,(xo)=

where the profit flow with the traditional technology defined as above. Now suppose the
farm has the option to switch to the modem technology. If the farm switches to the modem

technology it must pay a one time sunk cost of 1.6 The increase in profit with the modem
technology would be

The increase in profit is the value of the investment at time t. A~r(Xo) is defined over five

regions, which depend on xo :

(1) Az(xo)=O ifxo -< X-.Om~i"

(9.) A/r(x0 )-- P[a ÷ b2xo_ c2x°2] ,fXo~. min < X0 ~ x01min

(3) A~(xo

(4) A~r(Xo )= p~2/4c~ P[b, xo -C,Xo2] if/~ct~ <x0 <~coq

(5) Arc(xo )= 0 if xo >

In region (1) x0 is so low that production is zero with either technology. In region (2)
production is positive with the modem technology and zero with the traditional technology.

6 Marginal operating costs for each technology are assumed to be zero. This restriction could be lifted in
future versions of the paper.
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I

In region (3) production is positive but less than y~O~x with both technologies. In region (4)

production is less than y~X with the traditional technology but equal to ym~x with the

modem technology. In region (5) production is equal to ym,X with both technologies.

I
Figure 2 illustrates A:rr(x0). It reaches its maximum in region (3) where production is

¯ positive but less than ym~ with both technologies. Define x; to be the value of xo that

maximizes the profit-difference function, x ~ is found by setting the derivative of the

function in region (3) equal to zero,

o.
I

/OXo         - o~ - =

Solving,

Then,

/~gx0>0 ifx0<x~.< 0 if xo > xo.

Assuming that the initial value of xo is greater than x;, zX~:(xo ) will be decreasing in xo.

If the farm switches to the modem technology ~t time t, the payoff in terms of the present

value of the increase in profit is

For large x0, Al-I(x0) will be less than the fixed cost of investment and therefore the option

to switch technologies is said to be "out of the money." However, the option to switch

technologies may become "in the money" when x0 drops to a threshold level x_0.

~ l
The Value of the Option to Invest

~ Define F(xo) to be the value of the option to switch technologies. F(xo) can be

I calculated using a dynamic programming approach. Since there is no payoff (in terms of

~1
-12-

C--097562
(3-097562



I           increased profit) until the investment in modem technology is made, the only retum to

I holding the option is its capital appreciation. In the region x(~.0,~,), in which the farm

holds onto its oplSortunity to invest, the Bellman equation is

I Over a time interval dt, the total expected return on the investment opportunity, pFdt, is

equal to its expected rate of capital appreciation. Using Ito’s Lemma, dF, can be expanded
I as follows

I

i Substituting in the stochastic process for dx0 and noting that E(dz) = O,

E[dF(xo )]: I.t, xoF’(xo )d, + +a/xoZ F "(xo )dt.

I Dividing through by dt, F(xo) satisfies the following differential equation

1    2 2 tt t

I
"fax x° X (x0)+ I.txxoF (xo )- pv(xo )= O,

subject to the boundary conditions,

I F(O) =0
’I

I The threshold allocation level x_0 which triggers investment must be found as part of the

solution. The general solution for the value of the option is

I
F(xo)=A~xo~+A2xo~,

i where ]3~ and J~2 are the positive and negative roots of the fundamental quadratic

I +O’xZ/3(fl - 1)+ (’P- 8)fl - P = 0’

and the constants A1 and A2 remain to be determined. Since the value of the option to

I switch technologies goes to zero as x0 goes to infinity, the coefficient on the positive root

A~ must be set equal to zero to prevent the term with the positive root from exploding. The

I general solution for the value of the option thus reduces to
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The Threshold of Investment

Substituting in the solution for the value of the option to invest, the boundary
conditions at the investment threshold become

A~ Xot~ = AI-I x(5.o)- I

/~A~xo~-, = Al-i’(,5.o)

These are known as the value matching and smooth pasting conditions. The value
matching condition states that, at the threshold, the value of the farm’s option to invest
equals the value of the investment minus the cost of the investment. The smooth pasting
condition states that, at the threshold, the increase in the value of the option associated with

a decrease in xo equals the increase in the expected present value of the investment

associated with a decrease in x0. Combining the value matching and smooth pasting

conditions, one can solve for the function which defines the threshold x_o

The Value of the Farm with the Option to Invest

FI~ (x0 ) was the expected present value of the farm at t=O assuming it did not

have the option to invest in the modem technology. If one now considers the value of the

farm’s option to switch technologies, the expected present value of the farm at t = 0
becomes

1-I(x0)= E :rq (Xo,)e-0’d + A2(p)t~

For xo < x_.0 the farm holds on to its option to invest and uses the traditional technology,

and for xo > x_.0 the farm exercises its option and produces with the modem technology.

At the threshold, ~, the value of the option to invest equals the expected increase in profits
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minus the investment cost, so the expected present value of the farm at the time of

investment is

l-I )= Ei ’ x(f-°’ )e-a dt + AFl x(f-° )- I’

t t t

Thus, the expected present value of the farm at the time of investment is just the expected

present value of the stream of profits associated with the modem technology, less the fixed

cost of investment.

The Effect of Greater Uncertainty

If the degree of uncertainty crx increases, the farm will wait until its allocation drops

to a lower level before it invests. An increase in uncertainty lowers the investment threshold

x__o in two ways. First, an increase in o"x increases/32, which causes the option value term

in the threshold equation to increase, and this decreases the threshold X_o. The second

effect results from the concavity of Al-I(x0) in x0. (As shown in Figure 2, as x0 decreases,

zXzc(x0 ) increases at a decreasing rate until eventually, if x0 < x~, zX~c(x0) begins

decreasing.) Since x0 follows a geometric Brownian motion, the variance of the

distribution of xo increases as one looks farther into the future. By Jensen’s Inequality,

the expected value of a concave function decreases as the variance increases. Therefore, an

increase in o"x decreases the expected present value of the profit-difference stream AI-I (xo).

This discourages investment and reduces x_o.
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The Effect of Increased Investment Cost

Since An:(x0)is only increasing for x0 > x~, investment will only occur if there

exists a threshold allocation level x__o greater than or equal to x ~. There will be a cutoff

investment cost ~" at which Y..0 = x~, and for )" > I investment will not occur.

IV. TECHNOLOGY ADOPTION UNDER A MARKET SYSTEM

Stochastic Market Price

Now suppose the farm can trade water in a competitive market, and there are no
transaction costs associated with trading. Assume the market price of water p follows a

geometric Brownian motion with positive drift

dp = IZp pdt + ~ pdzp,

and p is negatively correlated with W, i.e. E~z,,dzp ]= pdt and p < 0.

Production with Variable Input

The farm’s production function is the same as before, except now the farm can buy
or sell water in order to increase or decrease its input supply in response to changes in the
market price of water. Since the market is competitive, an individual farm’s trading

behavior is assumed to have no impact on the market price. Let xi be the amount of water

the farm trades if it is using technology i. xl will l~e positive if the farm buys water or
negative if the farm sells water. The farm’ s production function is

Yi = a + bo~i (Xo + xi )- c[o~i (xo + xi )~ /=1,2.

With each technology, the farm chooses x~ to maximize profits subject to the constraint that

x~ is greater than or equal to - x0. In other words, the farm cannot sell more than its initial

allocation. The optimization is

s.t.xi >-x0 i=1,2.

The superscript, m, distinguishes this unconstrained "market" profit function from the
constrained non-market profit function from section III. From the first order condition,

one can solve for the optimal level of water use with technology i
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I

xo+xg= - 2,P~t~g2 P ifp<p*

ifp >_p.*

p~* is the price at which the production revenue with technology i equals zero. Thus, when

P >- Pi the farm will sell its entire supply of water. The amount the farm trades in the

market with technology i is

-xl = 2Pgo~i2 p -xo
ifp < p

[- xo if p -> p"

Figure 3 illustrates the inverse demand function associated with technology i

P= Pb~i - 2Pc°~i2(x° + xi)"

The curve is kinked at p~*, the point at which the farm stops producing. When

xo + xi = ~//~co~i , the farm produces ym,X and, therefore, p = 0. Figure 4 shifts the axis

by xo in order to show excess demand, i.e. the amount the farm trades in the market. The

farm will buy (sell) with technology i if p is less than (greater than) p~0, where

p°i = Pbai - 2Pcc~ 2xo.

Note that a change in xo does not shift the curve in Figure 3, because the farm adjusts xi

to stay on the curve. The adjustment in xi can be seen in Figure 4. If xo increases, the

curve in Figure 4 shifts to the left, and if xo decreases, the curve shifts to the right.

Plugging in the optimal xi, profit can be calculated as a function of p, xo and the

production parameters. The form of the profit function depends on whether the farm

produces or sells all of its water

rci p,xo =Pa+          +pxo      if p<pi i=1,2
4Pci
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I
!

~ri"(p,xo) = pxo                if p >_ pi*     i = 1,2

! .Now one can solve for p;, the price at which the production revenue equ, als zero. Setting

I               Pa+             = O,
4Pq

I one finds

Since a is assumed to be negative, the number under the square root is positive. Note that

.P~ < P2 and thus the farm stops production at a lower price with the traditional technology
than with the modem technology.

The Investment Decision

As in the non-market case, first suppose that the farm does not have an option to

switch technologies. Then the value of the farm at t = O, given initial values p and x o, is

where ~r~m (Pt ,x0, ) is the instantaneous profit flow with the traditional technology as defined

above. Now suppose the farm has the option to switch to the modem technology. If the

farm switches to the modem technology it must pay a one time sunk cost of L Its increase

in profit with the modem technology is

A/r"(p) is the value of the investment at time t. It is defined over three regions, which

depend on p.7

7 In contrast, in the no-market case there were five regions, which depended on x0. There were five regions

in the no-market case, because if x0 was large enough to allow the farm to produce y~..x with both
technologies, the profit-difference equaled zero. Even though the farm could produce yO,.x with less water
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(1) A~z’~(p) = (Pb2 - p)2 (phi _ p)2 if p < pi* i= 1,2
4Pc2 4 Pq

(Pb2 - p)~
if p; < p < p;(2) AIr’~(p)= Pa+

4Pc2
(3) A~r’(p)= 0 if p _> p~

Figure 5 illustrates A,~ ’~ (,p). In region (I) the farm produces with both technologies, in

region (2) the farm only produces with the modem technology and in region (3) the farm
does not produce with either technology. Note that while the profit associated with a given
technology depends on x0, the change in profit is independent of x0.

Setting the derivative of An" (p) in region (1) equal to zero and solving for p, one finds

and

>0 if p < pmaX

<0 if p > pmax

In region (i) A~)is increasing up until p~X ~d then decreasing thereafter. A~)is

decreasing throughout region (2). Assu~ng that the initial value of p is less than p~, ~

p rises An ~ ~) will increase. The f~ can switch the modem tec~ology at any time t.

If it switches at t, the payoff in te~s of the present value of ~e increase in profit is

with the modern technology, the extra water was worthless. Now, however, even if p is low enough to
allow the fa~ to produce ymu with either technology, there is still an advantage to the modern technology
because the fa~ can produce y~X with less water with the modern technology than with ~e ~aditional
technology. If the fa~ is a buyer, its input costs will be lower and if the f~ is a seller, i~ revenue will
be higher with the modern technology. Only when the price falls to zero, does the profit difference fall to
zero. ~erefore, the profit function is defined over only ~ree regions instead of five.
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Over some price ranges, AI-I" (p) is less than the fixed cost of investment; therefore, the

option to switch technologies is "out of the money." However, the option to switch could

become "in the money" for higher values ofp.

The Value of the Option to Invest

The value of the option to switch technologies can be calculated as in the non-

market case. Using the same logic as before, it can be shown that the value of the option

satisfies the following differential equation

~rO’p2p2Fm" (’P)+ ~ppFm" (P)-pF~n(p)= O ’

subject to the boundary conditions

Fro(0) = 0

F m(~)’~ mI’Im(~)- It

Fo
The threshold price p" must be found as part of the solution. Since the difference in profit

between the modem and traditional technologies is independent of x0, this is an ordinary

differential equation in p. The general solution for the value of the option is

Fro(P)= B,P~’ + B2p~,

where fl~ and 132 are the positive and negative roots of the fundamental quadratic. Since the

value of the option to switch technologies goes to zero as p approaches zero, the coefficient

B2 must be set equal to zero to prevent the term with the negative root from exploding. The

solution thus reduces to

F"(p) = B,pt~’.

I The Investment Threshold

Substituting in the solution for the value of the option to invest, the value matching
I and smooth pasting conditions are
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I B,p  = , nm(p)-I

I
/3~B,p"~-’ = AFI"’(p’).

As before, the value matching condition states that the value of the farm’s option to invest
I equals the value of the investment minus the cost of the investment at the threshold. The

smooth pasting condition states that the increase in the value of the option associated with
I an increase in p equals the increase in the expected present value of the investment at the

threshold. Combining the value matching and smooth pasting conditions, one can solve

I for the function which implicitly defines the threshold p-

I The Value of the Farm with the Option to Invest

I
1-I~’(p, x0) was the expected present value of the farm assuming it did not have the

option to invest in the modem technology. If one now considers the value of the farm’s

I option to switch technologies, the expected present value of the farm’s profits at t = 0

becomes

I
I

For p < p the farm holds on to its option to invest and uses the traditional technology, and

I for p >_ ~ the farm exercises its option and produces with the modem technology. At the

threshold, p’, the value of the option to invest equals the expected increase in profits minus

I the investment cost,

t

I = Ei~’(’fft’x°)e-~’dt+ EiA;rc’(~t)e-~’dt-It t

I
¯ i

a                                                          _21_
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Thus, the expected present value of the farm at the time of investment is tiae expected

present value of the stream of profits associated with production using the modem

technology minus the fixed cost of investment. Notice that the allocation x0 affects the

expected present value of the farm, but it does not affect the timing of investment. The

timing of investment only depends the time it takes for p to reach ~.

The Effect of an Increase in Uncertainty

As in the non-market case, there are two effects of an increase in o’p. First, an

increase in O’p decreases fly As fl~ falls, the option value term in the threshold equation

increases, and the threshold p" that is required to trigger in.vestment increases. The second

effect results fromthe concavity of Al-I"(p)inp. (Note, the profit functionszci"(p) are

convex in p: as p increases, nri"(p) decrease at a decreasing rate. However, the difference

inprofit, Arc~(p), is concave in p: as p increases, z~"(p) increases at a decreasing rate

untileventually, ifp >p~x, Arc’(,p) begins decreasing.) By the properties ofthe

geometric Brownian motion, the variance of the distribution ofp increases as one looks

farther into the future. By Jensen’s Inequality, the expected value of a conca~)e function

decreases as the variance increases. Therefore an increase in o-p decreases All" (p). This

discourages investment and causes ff to increase.

The Effect of Increased Investment Cost

If Azc"(p)were everywhere increasing inp, eventually p would rise high enough

to trigger investment, i.e. for each I one could solve for ~. However, since Azr"(p) is

only increasing forp < pmaX, investment will only occur if there exists a threshold price ~

less than pm,X. It follows that there will be a cutoff investment cost/’, at which p" = pmaX,

and for I >/" investment will never occur.
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V. INVESTMENT WITH AND WITHOUT A WATER MARKET

Static Example of Technology Adoption

It is often claimed that farms will have’ greater incentive to adopt modem irrigation
technology if they have access to a water market. In fact, while a farm’s incentive to adopt
modem technology may increase, it is also possible that its incentive may decrease. Farms
which might have adopted modem technology under a non-market water allocation system,
may be able to delay adoption when they have the option to buy water in a market. It is
more accurate to say that access to water markets will result in more efficient technology

adoption, not necessarily more technology adoption.
The comparison between non-market and market water allocation systems is closely

related to the comparison between a fixed pollution standard and a tradable emission permit
system. As discussed in section II, Malueg (1989) uses a static graphical analysis to
demonstrate that a shift from a fixed standard to a tradable permit increase orsystemmay
decrease the incentive for finns to switch from a high-cost to a low-cost pollution
abatement technology. While Malueg’s framework is static with no uncertainty, it is
illustrative to work through a similar logic for the water model before analyzing the
technology adoption decision within the stochastic dynamic framework employed in this
paper.

Reducing the production functions in sections D-I and IV to a single time period, I
compare the increase in profit associated with adopting modem irrigation technology under
the non-market and market systems. I show that, for a given initial allocation x0, there

exists a price, Ps, for which the gains from moder~a technology adoption are the same under

both systems. For p greater than (less than) Ps, I show that the gains from the modem

technology are greater (less) a system a system.under market than non-market To
demonstrate this, I first compare the value of switching to a market system when only the
traditional technology is available, and the value of switching to a market system when only
the modem technology is available. I then use these results to compare the value of
switching technologies under a market versus non-market system. "Thus initially I hold the
technolo’gy type fixed and allow the allocation system to change, and then I hold the

allocation system fixed and allow the technology to change.

Non-Market vs. Market Allocation

Suppose only the traditional technology is available, and one wants to know the
value of switching to a market system. The increase in profit under a market system
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depends on the amount by which the farm’s initial allocation x0 deviates from the amount it

would optimally purchase if it had access to a market. For each x0, there exists a price,

p~O, at which xo is the optimal input quantity. Referring back to Figure 4, p~0 is the price

at which the excess demand for water equals zero given an initial allocation of Forx0.

p > p~O, the farm will sell some of its initial allocation, and for p < p~O, the farm will by

I more water. Let A]~1 = ~’1m (p, X0 )-- ~1 (Xo) be the change in profit with the traditional

i irrigation, where rn distinguishes the unconstrained market profit function from the

constrained non-market profit function as before, and i = 1 is the traditional technology.

The change in profit is just the profit with the traditional technology under the market
I system less the profit with the traditional technology under the non-market system. The

relationship between A~r~ and p is illustrated by the solid line in Figure 6. If the price
I equals op~, the farm uses xo under both the non-market and the market systems, so

I A~ = O. Ifp is greater than or less than p~O, An:~ > 0 because with the market system the

farm can adjust its input level in response to changes in the price. Forp greater than p~O,

I the farm sells water, and forp less than p~O, the farm buys water. This is just a

demonstration of LeChatelier’s principle.
I If the farm were using the modem technology (i = 2) instead of the traditional

technology, there would exist another price, p~0, at which x0 is the optimal input quantity.
I And again, for each x0, there is a different pz°. With the modem technology, the farm’s

i derived demand for water would pivot up and to the right as shown in Figure 7. The

intercept of the demand curves occurs at (xT, p max). For prices less than pmax, the farm

I demands less with the modem technology than with the traditional technology at every
price. Alternatively, the farm is willing to pay more for a given amount with the traditional

I technology,s Therefore, if x~ is less than zero (i.e. the intercept is to the left of the vertical

I s By setting the demand function with traditional technology equal to the demand function with modern

technology, one can solve for the price, /3, at which x0 +x~ equals x0 +x2 :

I Solving,
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access), p~O is greater than p2° because the farm is willing to pay more for x0 with the

traditional technology than with the modem technology.9 When the farm uses the modem

technology, the increase in profit associated with the market system is

A~r2 = ~ (p’ x° )- ~2 (Xo)- The dotted line in Figure 6 illustrates the relationship between

Azc2 and p. At p~, the farm uses x0 under both the non-market and market systems so

An:2 = 0, and as p moves above or below p2°, A~-c2 > 0.

~ = Pb~lO~2 = pmax,
O~l -I-0~2

so the price at which x0 + X1 equals x0 + X2 is the same price at which A/17m(p)is maximized. If

p < prnax, then the farm uses more with the traditional technology and if p > pmax, the farm uses more

with the modern technology. If adoption occurs, it occurs when ~" < pmaX, in the range where
is still increasing. Therefore, at the point of adoption, the farm must use more with the traditional

technology than with the modern technology (x1 > x2 ).

At p = pmax, the farm will use

Xo +xi = . b .2(,~ + ~ )

with each technology. When p < pmax, the farm will use more than this with each technology but use

relatively more with the traditional technology than with the modem technology. Given that ~ < pmax is
the threshold price, at the switch point, the farm will use

)

The farm buys with technology i at the switch point if

~ < Pb~i -2Pc~i2Xo

and sells if

_~ > Pb~i - 2 P co~i2Xo.

9 If xi* is greater than zero (i.e., the intercept of the demand curves occurs to the right of the vertical axis),

p~0 < p2O. However, this example assumes that xi* is less than zero because it is more intuitive to discuss
the range for which the modem technology decreases water use, i.e., for a given price, the farm demands less
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I
I

Ignoring the fixed costs of adopting the modem technology for now, one can

i compare the increase in profit associated with switching to the market system with the

traditional versus the modem technologies. For the initial allocation Xo, Zkrr~ = Azr2 when

I the price equals Ps. Each new allocation level x0 will have a different ps. At p~, the farm
buys water with the traditional technology and sells water with the modem technology.

i For p greater than (less than) p,, Mc2 is greater than (less than) /~1" Substituting in the

definitions for Z~z1 and zSaz2,

I :rc~’(p, Xo)-Zc2(Xo)>:rc~’(P, Xo)-:rv~(Xo) forp> Ps

I Traditional vs. Modern Technology

The above inequalities compare the effect of changing the water allocation regime

I with a given technology. They can be rearranged to obtain the following inequalities which
compare the effect of changing the technology within a given water allocation regime.

I ~;(p, xo)-~;(p,Xo)> zr2 (x0)-tc~ (x0) forp> ps
¯ ~r:(p, Xo)-rc~’(P,Xo)<~2(Xo)-~v,(Xo) forp < p,

I The increase in associated with the modem is underprofit technology greater(less) a

market system than a non-market system ifp is greater (less) than p,. In other words, the

I market increases (decreases) the farm’s incentive to adopt modem technology depending on

whether price is greater (less) than p~. At Ps, the farm buys with the traditional technology

I and sells with the modem technology. At a sufficiently high price, the farm will sell with
both the traditional and the modem technology, and likewise, at a sufficiently low price, the

i farm will buy with both the traditional and modem technology. If the farm is a seller, the
market increases the farm’s incentive to adopt modem technology, and if the farm is a
buyer, the market decreases the farm’s incentive to adopt modem technology. This result

I is analogous to Maleug’s]°

I with the modern technology. If xi* were greater than zero, the logic of this section would still hold but the

results would be reversed.

I 1o As discussed in the previous footnote, these results assume that the intercept of the excess demand curves

the left of the vertical axis and therefore p~0 < pO2. They also assume that technology adoptionoccursto

occurs in the region to the right of the intercept of the two demand curves, i.e. for ~ < pmaX. This

I intuition was discussed in section IV.
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Whether the farm actually will adopt the modem technology under the non-market

or market system depends on the fixed cost of adoption. Using the notation from sections

III and IV to simplify the expressions,

 ,x0)¯
Notice, once again, that while the profit with either technology under the market system is a

function ofx0, the difference in profit An:re(p) is only a function ofp. The farm will adopt

the modem technology under the non-market system if A~r(xo) >_ I where I is the fixed cost

of adoption. Likewise, the farm will adopt the modem technology under the market system

if Azc"(p)> I. In the static example, there is no option value of waiting, so the adoption

role is the traditional present-value role.

Dynamic Framework

In the static example above, the effect of the market on technology adoption was

determined by comparing the change in profit under the market system, A,,r" (p), with the

change in profit under the non-market system Mr(xo). This is a relatively easy

comparison, given that p and x0 are fixed in a deterministic static example. In contrast, in

the dynamic model used elsewhere in this paper, x0 and p are assumed to evolve

stochastically over time. An analysis of the effect of the market on technology adoption

must examine the expected present value of modem technology adoption, due to the

increase profit in all future time periods, under the non-market and market systems. As

defined previously, AFI(xo) is the expected present value of switching technologies at time

t under the non-market system given that the allocation level at time t is x0, and AYI’~ (p) is

the expected present value of switching technologies at time t under the market system

given that the price at time t is p. One can ask two related but different questions: First, at

agiven t, is AFl(x0) or AH"(p) larger? Second, will a given farm invest inmodem

technology earlier with a non-market or market system?

The first question is most directly related to the static analysis above. As in the

static model, it can be shown that there is a price p, at which Al-I(x0 )= AFI’(p).
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Although AI-I’~ (p)is independent OfXo, p, is a function ofxo because ArI(xo)is a

function of x0.1~ Assuming that p, lies in the range of prices, 0 < p < pm~X, for which

AI-Im (p) is increasing,

> o

Therefore,

ArI(xo) < ArI’~ (p) forp < p,
_> forp > p,.

This means that given an allocation at time t of x0, the expected present value of switching

technologies at time t is greater (less) with a market system than with a non-market system

if the price at time t is greater (less) than p,. The above comparison, however, does not
address the question of whether it is optimal to invest under either system. The second

question pertains to the timing of investment.

The Timing of Investment

Given a non-market allocation system, it was shown that the farm will invest in

modem technology when x0 falls to a critical level x_o. By the value matching condition,

when the allocation equals x_o, the value of the option to invest F x(~_o)equals the expected

present value of switching technologies AFI x~_0)less the cost of investment I. Given a

market allocation system, it was shown that the farm will invest in modem technology

when p rises to a critical level ~. At p’, the option to invest F ’~ (if) is equal to the

expected present value of switching technologies zXFI’~ (if) minus the cost of investment L

Whether a farm will invest earlier under a non-market or a market system depends on the

time paths of x0 and p. More specifically, it depends on which threshold, x_0 or y, is

reached first.
As an exercise, suppose a farm is cloned so there are two identical farms, named

Farm A and Farm F. Suppose each farm receives the same allocation of water xo, but

u Likewise, AFIm is independent ofxo, butp, is a function ofxo since AFINM is a function ofxo.
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Farm F has access to a distribution system which allows it to trade freely in a market while

Farm A does not. Farm A is the "Autarkic farm" and Farm F is the "Free-trade farm." At

any time t, one can calculate (x0, p), the allocation to each farm and the market price.

Figure 8 shows the thresholds that trigger action in (x0, p) space. Farm A will invest

when its allocation falls to x0 = X_o, and Farm F will invest when the price of water rises to

p = ft. If the point (x0, p) begins in quadrant 4, both farms use the traditional

technology. Cases I - HI examine different time paths for (x0, p). In case I, Xofalls while

p stays relatively constant causing the point (xo, p) to hit the threshold xo = Y.0 and move

into quadrant 3. At the threshold,

AI-I" (p’)- B,(p’)~’ < AFI(~ )- A~ (.if.o)~ = I,

so Farm A invests while Farm F holds onto its option to invest. In case II, xoremains

relatively constant while p falls. The point (xo, p) hits the threshold p = ff and moves

into quadrant 2, causing Farm F to invest while Farm A holds onto its option to invest. At

the threshold,

AI-I x(~_0)- A2 ~ ~ < AFire (p’)- B, (gy’ = I.

Farm A and Farm F will not adopt at the same time unless x o falls and p rises such that

(x°’ p) hits the intersection of the threshold curves and moves directly into quadrant 1 as

shown in case III. When the thresholds are hit simultaneously,

AH x(~.o)- A2 x(5.o)~ = AI-I"(~)- B~ (ff)~ = I.

The Correlation Between Individual Supply and Price

In section IV, the market price of water p was assumed to be negatively correlated

with the aggregate supply of water W, i.e. E~z~,dzp ]= pdtand p < 0. In section III the

relationship between the aggregate water supply and individual water supply was assumed

to be proportional. Given the assumption of proportional allocation, o"x = O-w, and
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therefore the correlation between individual supply and the price is also/9. If instead of a

proportional allocation system, them is a priority allocation system (also known as a

queuing system), this relationship will not hold for all individuals. Un.der a priority

system, the supply of senior rights holders may vary less than the aggregate supply

(a] < a.,) while the supply ofjunior rights holders may vary more than the aggregate

supply (0"7 > O"w ). In this case, the correlation between individual supply and the price

will depend on the seniority of a farm’s water rights.

Continuing with the example above, the actual path of (x0, p) will depend on

whether Farms A and F hold junior or senior water rights. If they hold junior water rights,

the percentage reduction in x0 may be larger than the percentage reduction in the aggregate

water supply, where the aggregate supply,

w = x0A + + Zx ,

F may each beis the sum of supplies to all J + 2 water users. For example, xo~ and xo

reduced by 50% in a drought year even if the aggregate supply only falls by 25%. Since

the market price is a function of the aggregate supply, the increase in p might not be as

great as the reduction in xo, in which case Farm A may adopt the modem technology

before Farm F (case I). If instead Farms A and F hold seniorwater rights; x0a and x0v

may remain relatively constant even if the aggregate supply falls. In this case, p might rise

while x o remains relatively constant, and Farm F may adopt before farm A (case II).

VI. TRANSACTION COSTS

This paper has considered two polar cases: a non-market system and a market

system. The non-market system implicitly assumes that the transaction costs of trading are

infinite. The market system assumes the transaction costs trading are zero. Inthat of

reality, most market transactions involve some transaction costs and this is especially tree

with water markets. Even with institutional reforms, the fixed costs of market

administration and enforcement may be high. In addition, if the market is structured to

allow decentralized, bilateral trades, search and negotiation costs may be high. Water

transactions may also generate negative externalities due to reductions in return flows and

income in the basin of origin. If traders are forced to internalize these externalities through
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a tax per unit of water traded, the tax will be viewed by the traders as a marginal transaction

cost. With either fixed or marginal transaction costs, there will be a range of water market

for which the farm does In the of f’Lxedprices notparticipatein themarket. case COSTS,

even if the marginal value product of water is greater (less) than the price, the farm will not

buy (sell) water if the total gains from trade are less than the transaction costs. With

marginal transaction costs, there will be a wedge between the price received by the buyer

and the seller. Stavins explores the case of marginal transaction costs in a tradable permit

market.J9]

If there are marginal transaction costs, there will be multiple technology investment

thresholds depending on whether the farm buys, sells or does not participate in the market.

For example, if the farm buys with the traditional and sells with the modem it will have one

investment threshold, and if it buys with the traditional and does not participate with the

modem it will have another. Fixed transaction costs could be modeled as a one-time

market access fee. If the farma fixed cost F it can gain market access and then tradepays

freely. With a fixed entry cost, there will be different possible paths: the farm may adopt

modem technology and then invest in market access, it may invest in market access and

then adopt modem technology, it may do both simultaneously, it may never adopt or invest

in market access, and so on. Future versions of this paper will explore the effect of fixed

and marginal transaction costs on technology adoption in more detail.

!
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FIGURE 1. Marginal productivity of water with traditional andI modern technology. Area under each curve is ymax.
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¯ -- FIGURE 2. The difference in profit between modern and traditional

I technology with a non-market The investment threshold issystem. x_o.
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FIGURE 3. Inverse demand with technology i.
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FIGURE 4. Excess demand with technology i.

-33-

C--097583
C-097583



|

,
!

0                 p                p~      p~        p

! FIGURE 5. The difference in profit between modern and traditional
technology with a market system. The investment threshold is ~.
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0 p~      p, p’~ p

FIGURE 6. The difference in profit between a market and non-market
system.
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FIGURE 7. Excess demand with modern and traditional
technology.
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FIGURE 8. Investment thresholds with a market
versus non-market system.
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